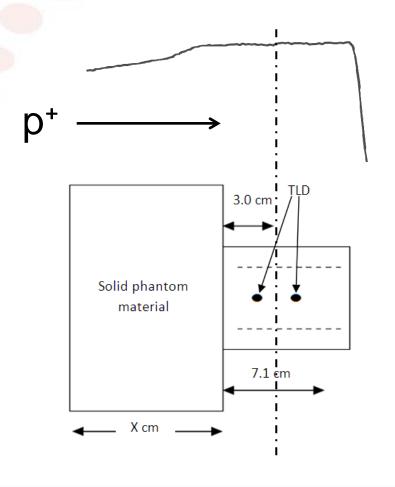
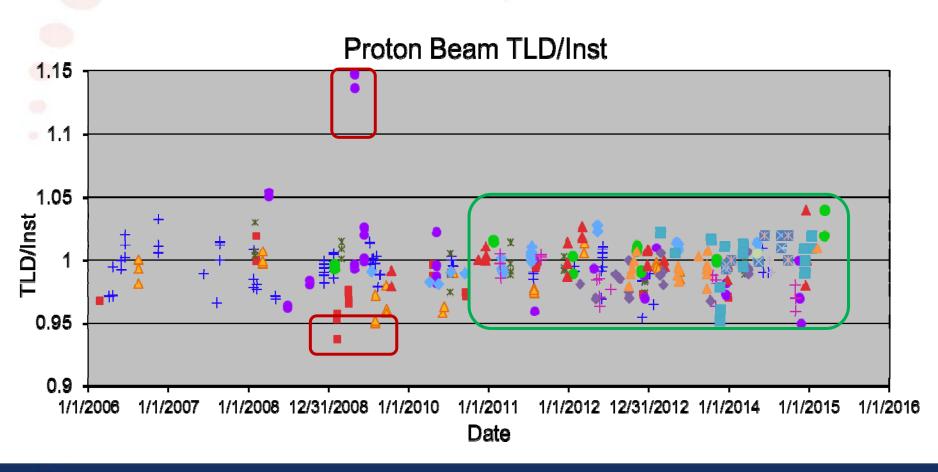
IROC Houston's Proton Beam Validation for Clinical Trials

Paige Taylor, M.S. AAPM Annual Meeting July 14, 2015



Proton QA Audit Components

- Goal: ensure proton centers deliver consistent,
 comparable dose for clinical trials & follow NCI/AAPM recommendations
- Remote
 - Annual TLD audit of beam calibrations
 - Anthropomorphic proton phantom audits
- On-site
 - Dosimetry review site-visit


Output Audits

- TLD used to monitor beam output annually – verification of TRS 398 protocol
- TLD placed in acrylic blocks, institutions provide own water-equivalent buildup
- OSLD also investigated
- Characterizable response at center of modulation

TLD Output Audits

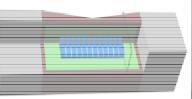
Which calibration protocol is recommended for proton beams?

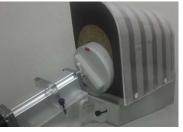
20%	1.	AAPM TG 21
20%	2.	AAPM TG 43
20%	3.	AAPM TG 51
20%	4.	IAEA TRS 277
20%	5.	IAEA TRS 398

Correct Answer:

5: IAEA TRS 398

Per recommendations by NCI and AAPM Ad-hoc advisory group in 2012

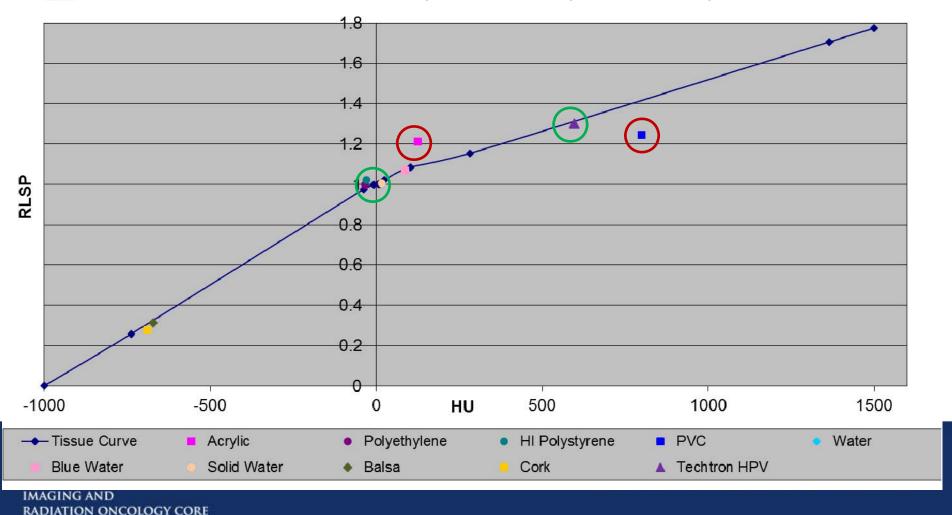

Ref: NCI. Guidelines for the Use of Proton Radiation Therapy in NCI-Sponsored Cooperative Group Clinical Trials: RPC; 2012.


Ref: IAEA, P. Andreo, D. T. Burns, K. Hohlfeld, M. S. Huq, T. Kanai, F. Laitano, V. G. Smyth, and S. Vynckier. 2000. Code of Practice for Proton Beams. In Absorbed Dose Determination in External Beam Radiotherapy: An International Code of Practice for Dosimetry Based on Standards of Absorbed Dose to Water. IAEA, Vienna. 181.

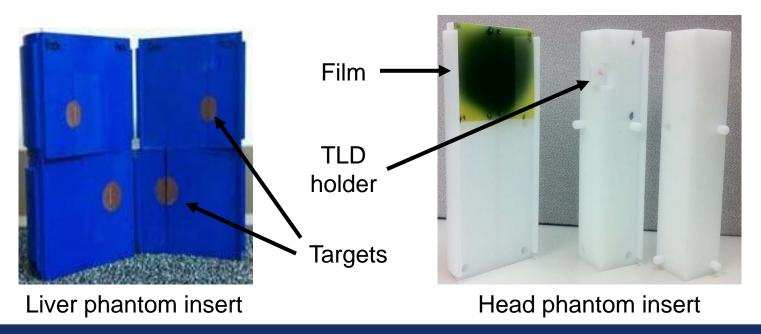
- 5 proton phantoms: prostate, spine, lung, head, liver
 - Prostate, head: simple, spherical target geometry
 - Spine: field matching
 - Lung, liver: motion included
 - Liver: 2 targets

Prostate/pelvis

Spine


Lung/thorax

Head


Liver

Phantoms made from proton-equivalent plastics

 Phantoms contain TLD and radiochromic film – used for absolute and relative dose comparison with treatment plan

91 proton phantoms irradiated, analyzed

	Prostate	Spine	Lung	Head	Liver	TOTAL
Total Irradiations	35	16	20	16	4	91
# Passed	25	13	15	16	2	71
Pass Rate	71%	81%	75%	100%	50%	78%

Why are different plastics required for proton phantoms relative to photon phantoms?

20%	1.	Photon plastics are too heavy
20%	2.	To match tissue HU-RLSP curve
20%	3.	Proton plastics are cheaper
20%	4.	Different dosimeters are used
20%	5.	Proton plastics are deformable

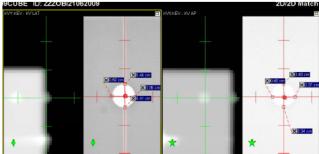
Correct Answer:

• 2: To match tissue HU-RLSP curve

Many plastics used for our photon phantoms do not fall on the tissue-equivalent conversion curve for proton therapy

Ref: Grant, et al. Relative stopping power measurements to aid in the design of anthropomorphic phantoms for proton therapy. <u>JACMP</u>. 2014; 15(2): 121-126.

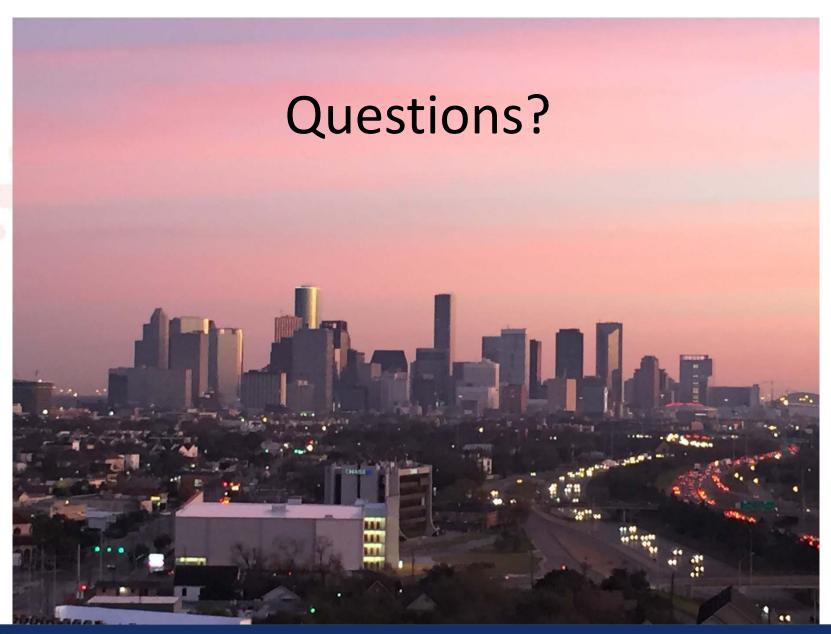
On-site Proton Dosimetry Audits


- Institutions visited after routinely treating patients for 6 months, no fewer than 3 disease sites
- Each delivery modality has separate audit requirement – must each be reviewed
 - Scattering
 - Uniform Scanning
 - Spot Scanning/PBS

On-site Proton Dosimetry Audits

- Review:
 - Absolute calibration
 - Ion chamber in water
 - Dosimetry for reference and patient fields
 - 2D ion chamber array, MLIC
 - IGRT
 - Film on cube
 - CT-RLSP
 - Tissue-equivalent phantom
 - Treatment planning procedures
 - Machine & patient-specific QA

On-site Proton Audit Results


- Common site visit recommendations:
 - QA (66 rec's)
 - Expected to improve when AAPM Task Group 224 (proton machine QA) is published
 - CT Number/RLSP conversion (11 rec's)
 - Most discrepancies observed at high CT #s, a few at low CT #s
 - Very few recommendations for beam output, delivery

Summary

- TLD
 - Output measurements within ±5% over past several years
 - Will transition to OSLD in the near future
- Phantoms
 - Phantom pass rates improving
 - Motion, OARS, multiple targets prove challenging
- On-site Dosimetry Review
 - Very few dosimetry recommendations
 - Many QA recommendations

